Looking Back: A Probabilistic Inverse Perspective on Test Generation

Joachim Tilsted Kristensen ¹ Tobias Reinhard 2,3 Michael Kirkedal Thomsen 1,4

¹University of Oslo

²KU Leuven

³Technical University of Darmstadt

⁴University of Copenhagen

TYPES, June 11, 2024

Inverse Programs

Definition (Invertible)

A function f **:: A -> B** is called invertible, if there exists another function unf **:: B -> A**, that satisfies the equations

unf $(f a) == a$ f (unf b) == b

Examples

dec **:: Int -> Int** dec suc_n **=** suc_n - 1 undec $n = n + 1$

fib, unfib **::** (**Int**, **Int**) **->** (**Int**, **Int**) fib $(a, b) = (a + b, a)$ unfib (ab, a) **=** (a, ab - a)

```
fib_pair :: Int -> (Int, Int)
fib pair \theta = (1, 1)fib_pair n = fib (fib_pair (dec n))
```
unfib_pair **::** (**Int**, **Int**) **-> Int** unfib pair $(1, 1) = 0$ unfib pair p = undec (unfib pair (unfib p))

Why?

 \blacktriangleright decode (encode x) = x

Why?

- \blacktriangleright decode (encode x) = x
- \triangleright decrypt key (encrypt key x) = x

Why?

- \blacktriangleright decode (encode x) = x
- \triangleright decrypt key (encrypt key x) = x
- \triangleright test (untest False) = False

Why?

- \blacktriangleright decode (encode x) = x
- \blacktriangleright decrypt key (encrypt key x) = x
- \triangleright test (untest False) = False
- \triangleright Static guarantees that follow from information preservation.

Why?

- \blacktriangleright decode (encode x) = x
- \triangleright decrypt key (encrypt key x) = x
- \triangleright test (untest False) = False
- \triangleright Static guarantees that follow from information preservation.

How?

 \blacktriangleright McCarthy's generate and test

Why?

- \blacktriangleright decode (encode x) = x
- \triangleright decrypt key (encrypt key x) = x
- \triangleright test (untest False) = False
- \triangleright Static guarantees that follow from information preservation.

- \blacktriangleright McCarthy's generate and test
- Bennett's reversible Turing Machine $(f' \times = (x, f \times))$

Why?

- \blacktriangleright decode (encode x) = x
- \triangleright decrypt key (encrypt key x) = x
- \triangleright test (untest False) = False
- \triangleright Static guarantees that follow from information preservation.

- McCarthy's generate and test
- Bennett's reversible Turing Machine $(f' \times = (x, f \times))$
- Reversible by construction (Janus, Theseus, RFun, π -calculus)

Why?

- \blacktriangleright decode (encode x) = x
- \triangleright decrypt key (encrypt key x) = x
- \triangleright test (untest False) = False
- \triangleright Static guarantees that follow from information preservation.

- McCarthy's generate and test
- Bennett's reversible Turing Machine $(f' \times = (x, f \times))$
- Reversible by construction (Janus, Theseus, RFun, π -calculus)
- I Relational intermediate languages (Mogensen, Kirkeby/Glück)

Why?

- \blacktriangleright decode (encode x) = x
- \triangleright decrypt key (encrypt key x) = x
- \triangleright test (untest False) = False
- \triangleright Static guarantees that follow from information preservation.

- McCarthy's generate and test
- Bennett's reversible Turing Machine $(f' \times = (x, f \times))$
- Reversible by construction (Janus, Theseus, RFun, π -calculus)
- I Relational intermediate languages (Mogensen, Kirkeby/Glück)
- Explicit inverse program semantics (Jeopardy)

Why?

- \blacktriangleright decode (encode x) = x
- \triangleright decrypt key (encrypt key x) = x
- \triangleright test (untest False) = False
- \triangleright Static guarantees that follow from information preservation.

- McCarthy's generate and test
- Bennett's reversible Turing Machine $(f' \times = (x, f \times))$
- Reversible by construction (Janus, Theseus, RFun, π -calculus)
- I Relational intermediate languages (Mogensen, Kirkeby/Glück)
- \blacktriangleright Explicit inverse program semantics (Jeopardy)

Jeopardy (Syntax)

 $x \in \mathbf{Name}$ $c \in \mathbf{Name}$ $\tau \in \mathbf{Name}$ $f \in \mathbf{Name}$ $p ::= x \mid [c \; p_i]$ $v ::= [c v_i]$ $\Delta ::= f(p:\tau_n): \tau_t = t \cdot \Delta$ | data $\tau = [c \tau_i]_i$. Δ | main q . $q ::= f | (invert q)$ $t ::= p$ $\mid g p$ | case $t : \tau$ of $p_i \rightarrow t_i$

(Well-formed variable names). (Well-formed constructor names). (Well-formed datatype names). (Well-formed function names). (Patterns). (Values). (Function definition). (Data type definition). (Main function declaration). (Function). (Patterns in terms). (Function application). (Case statement).

Jeopardy (Semantics)

$$
\downarrow \text{Variable}: \frac{\Delta \Gamma \vdash p_i \downarrow v_i}{\Delta \Gamma \vdash x \downarrow v} \quad (\Gamma(x) = v) \quad \downarrow \text{Constructor}: \frac{\Delta \Gamma \vdash p_i \downarrow v_i}{\Delta \Gamma \vdash [c \ p_i] \downarrow [c \ v_i]}
$$
\n
$$
\downarrow \text{Case}: \frac{\Delta \Gamma \vdash t \downarrow v}{\Delta \Gamma \vdash \text{case } t : \tau \text{ of } p_i \rightarrow t_i \downarrow v_i} \quad (\psi)
$$
\n
$$
\downarrow \text{Application}: \frac{\Delta \Gamma \vdash p \downarrow v'}{\Delta [f \ (p' : \cdot) : \cdot = t'] \Gamma \vdash f \ p \downarrow v}
$$
\n
$$
\downarrow \text{Inversion}: \frac{\Delta \Gamma \vdash g \ p \uparrow v}{\Delta \Gamma \vdash (\text{invert } g) \ p \downarrow v}
$$

Jeopardy (Semantics)

$$
\downarrow \text{Variable}: \frac{\Delta \Gamma \vdash x \downarrow v}{\Delta \Gamma \vdash x \downarrow v} \quad (\Gamma(x) = v) \quad \downarrow \text{Constructor}: \frac{\Delta \Gamma \vdash p_i \downarrow v_i}{\Delta \Gamma \vdash [c \ p_i] \downarrow [c \ v_i]}
$$
\n
$$
\downarrow \text{Case}: \frac{\Delta \Gamma \vdash t \downarrow v}{\Delta \Gamma \vdash \text{case } t : \tau \text{ of } p_i \rightarrow t_i \downarrow v_i} \quad (\psi)
$$
\n
$$
\downarrow \text{Application}: \frac{\Delta \Gamma \vdash p \downarrow v' \quad \Delta(\text{unify}(v', p')) \vdash t' \downarrow v}{\Delta[f (p' : \cdot) : \cdot = t'] \Gamma \vdash f p \downarrow v}
$$
\n
$$
\downarrow \text{Inverse:} \quad \frac{\Delta \Gamma \vdash g \ p \uparrow v}{\Delta \Gamma \vdash (\text{invert } g) \ p \downarrow v}
$$
\n
$$
\uparrow \text{Application}: \frac{\Delta \Gamma \vdash p \downarrow v' \quad \Delta [\downarrow' \downarrow v'] \leadsto \Gamma' \quad \Delta \Gamma' \vdash p' \downarrow v}{\Delta [f (p' : \cdot) : \cdot = t'] \Gamma \vdash f \ p \uparrow v}
$$
\n
$$
\uparrow \text{Inverse:} \quad \frac{\Delta \Gamma \vdash g \ p \downarrow v}{\Delta \Gamma \vdash (\text{invert } g) \ p \uparrow v}
$$

Jeopardy (Environment Inference)

$$
\boxed{\Delta[\![t\downarrow v]\!] \rightsquigarrow \Gamma \quad \text{(for linear terms } t)}\n\rightarrow\n\text{Variable}: \frac{\Delta[\![p_i\downarrow v_i]\!] \rightsquigarrow \Gamma_i}{\Delta[\![x\downarrow v]\!] \rightsquigarrow \{x\mapsto v\}}\n\rightarrow\n\text{Constructor}: \frac{\Delta[\![p_i\downarrow v_i]\!] \rightsquigarrow \Gamma_i}{\Delta[\![c\ p_i]\downarrow [c\ v_i]\!] \rightsquigarrow \sigma\Gamma_i}\n\rightarrow\n\text{Case}: \frac{\Delta[\![t\downarrow v_i]\!] \rightsquigarrow \Gamma_i}{\Delta[\![c\ \text{ase } t:\tau \text{ of } p_i \rightarrow t_i \downarrow v_i]\!] \rightsquigarrow \Gamma \quad (\psi)}\n\rightarrow\n\text{Application}: \frac{\Delta[\![t'\downarrow v]\!] \rightsquigarrow \Gamma' \quad \Delta\Gamma' \vdash p' \downarrow v' \quad \Delta[\![p\downarrow v']\!] \rightsquigarrow \Gamma \quad \text{After } \Delta[\![p\downarrow v]\!] \rightsquigarrow \Gamma \quad \text{After } \Delta[\![p\uparrow v]\!] \rightsquigarrow \Gamma \quad \text{Moreover}: \frac{\Delta[\![g\ p\uparrow v]\!] \rightsquigarrow \Gamma \quad \text{After } \Delta[\![p\downarrow v]\!] \rightsquigarrow \Gamma \quad \text{After } \Delta[\![p\uparrow v]\!] \rightsquigarrow \Gamma \quad \text{After } \Delta[\![p\uparrow v]\!] \rightsquigarrow \Gamma
$$

Jeopardy (Environment Inference)

$$
\boxed{\Delta[\![t\downarrow v]\!] \rightsquigarrow \Gamma \quad \text{(for linear terms } t)}\n\rightarrow \text{Variable}: \frac{\Delta[\![p_i\downarrow v_i]\!] \rightsquigarrow \Gamma_i}{\Delta[\![x\downarrow v]\!] \rightsquigarrow \{x\mapsto v\}}\n\rightarrow \text{Constructor}: \frac{\Delta[\![p_i\downarrow v_i]\!] \rightsquigarrow \Gamma_i}{\Delta[\![c\;p_i]\!] \downarrow [c\;v_i]\!] \rightsquigarrow \sigma\Gamma_i}\n\rightarrow \text{Cases}: \frac{\Delta[\![t\downarrow v_i]\!] \rightsquigarrow \Gamma_i}{\Delta[\![c\; \text{ase } t:\tau \text{ of } p_i \rightarrow t_i \downarrow v_i]\!] \rightsquigarrow \Gamma \quad (\psi)}\n\rightarrow \text{Application}: \frac{\Delta[\![t'\downarrow v]\!] \rightsquigarrow \Gamma' \quad \Delta\Gamma' \vdash p' \downarrow v' \quad \Delta[\![p\downarrow v']\!] \rightsquigarrow \Gamma \quad \text{After } \Delta[\![p\downarrow v]\!] \rightsquigarrow \Gamma \quad \text{After } \Delta[\![p\uparrow v]\!] \rightsquigarrow \Gamma \quad \text{After } \Delta[\![p\uparrow v]\!] \rightsquigarrow \Gamma \quad \text{Application}: \frac{\Delta[\![p'\downarrow v]\!] \rightsquigarrow \Gamma' \quad \Delta\Gamma' \vdash t' \downarrow v' \quad \Delta[\![p\downarrow v]\!] \rightsquigarrow \Gamma \quad \text{Application}: \frac{\Delta[\![p'\downarrow v]\!] \rightsquigarrow \Gamma' \quad \Delta\Gamma' \vdash t' \downarrow v' \quad \Delta[\![p\downarrow v]\!] \rightsquigarrow \Gamma \quad \text{After } \Delta[\![p\downarrow v]\!] \rightsquigarrow \Gamma \quad
$$

Explicit Program Inversion

Problems

 \triangleright Reversibility (local invertibility) Vs (global) Invertibility

```
swap :: (a, b) -> (b, a)
swap p = (snd p, fst p)
```
 \blacktriangleright Non-injective functions

sorted **:: Ord** a **=>** [a] **-> Bool** sorted $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ **= True** sorted (a **:** as) **=** all (a<=) as && sorted as

Explicit Program Inversion

Problems

 \triangleright Reversibility (local invertibility) Vs (global) Invertibility

```
swap :: (a, b) -> (b, a)
swap p = (snd p, fst p)
```
- \blacktriangleright Non-injective functions
	- sorted **:: Ord** a **=>** [a] **-> Bool** sorted $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ **= True** sorted (a **:** as) **=** all (a<=) as && sorted as

Approach (WIP)

- \blacktriangleright Probabilistic program inversion $((\text{invert } f) : (b : B) \rightarrow \text{Generator } (A b))$
- \blacktriangleright Stochastic types ((invert f) : $B \rightarrow A_{\delta}$)

Computable distribution

▶ Consider the term (even x) to be *open*.

Computable distribution

- ▶ Consider the term (even x) to be *open*.
- Assume a distribution D over x

Computable distribution

- ▶ Consider the term (even x) to be *open*.
- Assume a distribution D over x
- \triangleright D cannot be the uniform distribution.

Computable distribution

- ▶ Consider the term (even x) to be *open*.
- Assume a distribution $\mathcal D$ over x
- \triangleright D cannot be the uniform distribution.

Possible Solutions

- \blacktriangleright Size types
	- m **:** fin 5 **=** (invert even)(true)

Computable distribution

- ▶ Consider the term (even x) to be *open*.
- Assume a distribution $\mathcal D$ over x
- \triangleright D cannot be the uniform distribution.

Possible Solutions

- \blacktriangleright Size types
	- m **:** fin 5 **=** (invert even)(true)
- \blacktriangleright Stochastic Choice

Stocastic Types (WIP)

Example syntax

$$
t := x |...| \text{let } x \text{ from } \tau_{\delta} \text{ in } t
$$

$$
\delta := \text{uniform} |...
$$

$$
\tau := ...
$$

Intended rule for let

$$
\delta\text{-let}: \frac{\Gamma[x \mapsto \tau_{x\delta}] \vdash t : \tau_{\delta}}{\Gamma \vdash \text{let } x \text{ from } \tau_{x\delta} \text{ in } t : \tau_{\delta}}
$$

Thank you $\{-\Delta\}$.