
Looking Back: A Probabilistic Inverse Perspective on
Test Generation

Joachim Tilsted Kristensen 1

Tobias Reinhard 2,3

Michael Kirkedal Thomsen 1,4

1University of Oslo

2KU Leuven

3Technical University of Darmstadt

4University of Copenhagen

TYPES, June 11, 2024

1 / 12

Inverse Programs

Definition (Invertible)
A function f :: A -> B is called invertible, if there exists another
function unf :: B -> A, that satisfies the equations
unf (f a) == a
f (unf b) == b

2 / 12

Examples

dec :: Int -> Int
dec suc_n = suc_n - 1
undec n = n + 1

fib, unfib :: (Int, Int) -> (Int, Int)
fib (a, b) = (a + b, a)
unfib (ab, a) = (a, ab - a)

fib_pair :: Int -> (Int, Int)
fib_pair 0 = (1, 1)
fib_pair n = fib (fib_pair (dec n))

unfib_pair :: (Int, Int) -> Int
unfib_pair (1, 1) = 0
unfib_pair p = undec (unfib_pair (unfib p))

3 / 12

Motivation

Why?
I decode (encode x) = x

I decrypt key (encrypt key x) = x
I test (untest False) = False
I Static guarantees that follow from information preservation.

How?
I McCarthy’s generate and test
I Bennett’s reversible Turing Machine (f' x = (x, f x))
I Reversible by construction (Janus, Theseus, RFun, π-calculus)
I Relational intermediate languages (Mogensen, Kirkeby/Glück)
I Explicit inverse program semantics (Jeopardy)

4 / 12

Motivation

Why?
I decode (encode x) = x
I decrypt key (encrypt key x) = x

I test (untest False) = False
I Static guarantees that follow from information preservation.

How?
I McCarthy’s generate and test
I Bennett’s reversible Turing Machine (f' x = (x, f x))
I Reversible by construction (Janus, Theseus, RFun, π-calculus)
I Relational intermediate languages (Mogensen, Kirkeby/Glück)
I Explicit inverse program semantics (Jeopardy)

4 / 12

Motivation

Why?
I decode (encode x) = x
I decrypt key (encrypt key x) = x
I test (untest False) = False

I Static guarantees that follow from information preservation.

How?
I McCarthy’s generate and test
I Bennett’s reversible Turing Machine (f' x = (x, f x))
I Reversible by construction (Janus, Theseus, RFun, π-calculus)
I Relational intermediate languages (Mogensen, Kirkeby/Glück)
I Explicit inverse program semantics (Jeopardy)

4 / 12

Motivation

Why?
I decode (encode x) = x
I decrypt key (encrypt key x) = x
I test (untest False) = False
I Static guarantees that follow from information preservation.

How?
I McCarthy’s generate and test
I Bennett’s reversible Turing Machine (f' x = (x, f x))
I Reversible by construction (Janus, Theseus, RFun, π-calculus)
I Relational intermediate languages (Mogensen, Kirkeby/Glück)
I Explicit inverse program semantics (Jeopardy)

4 / 12

Motivation

Why?
I decode (encode x) = x
I decrypt key (encrypt key x) = x
I test (untest False) = False
I Static guarantees that follow from information preservation.

How?
I McCarthy’s generate and test

I Bennett’s reversible Turing Machine (f' x = (x, f x))
I Reversible by construction (Janus, Theseus, RFun, π-calculus)
I Relational intermediate languages (Mogensen, Kirkeby/Glück)
I Explicit inverse program semantics (Jeopardy)

4 / 12

Motivation

Why?
I decode (encode x) = x
I decrypt key (encrypt key x) = x
I test (untest False) = False
I Static guarantees that follow from information preservation.

How?
I McCarthy’s generate and test
I Bennett’s reversible Turing Machine (f' x = (x, f x))

I Reversible by construction (Janus, Theseus, RFun, π-calculus)
I Relational intermediate languages (Mogensen, Kirkeby/Glück)
I Explicit inverse program semantics (Jeopardy)

4 / 12

Motivation

Why?
I decode (encode x) = x
I decrypt key (encrypt key x) = x
I test (untest False) = False
I Static guarantees that follow from information preservation.

How?
I McCarthy’s generate and test
I Bennett’s reversible Turing Machine (f' x = (x, f x))
I Reversible by construction (Janus, Theseus, RFun, π-calculus)

I Relational intermediate languages (Mogensen, Kirkeby/Glück)
I Explicit inverse program semantics (Jeopardy)

4 / 12

Motivation

Why?
I decode (encode x) = x
I decrypt key (encrypt key x) = x
I test (untest False) = False
I Static guarantees that follow from information preservation.

How?
I McCarthy’s generate and test
I Bennett’s reversible Turing Machine (f' x = (x, f x))
I Reversible by construction (Janus, Theseus, RFun, π-calculus)
I Relational intermediate languages (Mogensen, Kirkeby/Glück)

I Explicit inverse program semantics (Jeopardy)

4 / 12

Motivation

Why?
I decode (encode x) = x
I decrypt key (encrypt key x) = x
I test (untest False) = False
I Static guarantees that follow from information preservation.

How?
I McCarthy’s generate and test
I Bennett’s reversible Turing Machine (f' x = (x, f x))
I Reversible by construction (Janus, Theseus, RFun, π-calculus)
I Relational intermediate languages (Mogensen, Kirkeby/Glück)
I Explicit inverse program semantics (Jeopardy)

4 / 12

Motivation

Why?
I decode (encode x) = x
I decrypt key (encrypt key x) = x
I test (untest False) = False
I Static guarantees that follow from information preservation.

How?
I McCarthy’s generate and test
I Bennett’s reversible Turing Machine (f' x = (x, f x))
I Reversible by construction (Janus, Theseus, RFun, π-calculus)
I Relational intermediate languages (Mogensen, Kirkeby/Glück)
I Explicit inverse program semantics (Jeopardy)

5 / 12

Jeopardy (Syntax)

6 / 12

Jeopardy (Semantics)

7 / 12

Jeopardy (Semantics)

7 / 12

Jeopardy (Environment Inference)

8 / 12

Jeopardy (Environment Inference)

8 / 12

Explicit Program Inversion

Problems
I Reversibility (local invertibility) Vs (global) Invertibility

swap :: (a, b) -> (b, a)
swap p = (snd p, fst p)

I Non-injective functions
sorted :: Ord a => [a] -> Bool
sorted [] = True
sorted (a : as) = all (a<=) as && sorted as

Approach (WIP)
I Probabilistic program inversion
((invert f) : (b : B) -> Generator (A b))

I Stochastic types
((invert f) : B -> Aδ)

9 / 12

Explicit Program Inversion

Problems
I Reversibility (local invertibility) Vs (global) Invertibility

swap :: (a, b) -> (b, a)
swap p = (snd p, fst p)

I Non-injective functions
sorted :: Ord a => [a] -> Bool
sorted [] = True
sorted (a : as) = all (a<=) as && sorted as

Approach (WIP)
I Probabilistic program inversion
((invert f) : (b : B) -> Generator (A b))

I Stochastic types
((invert f) : B -> Aδ)

9 / 12

Probabilistic program inversion

Computable distribution
I Consider the term (even x) to be open.

I Assume a distribution D over x
I D cannot be the uniform distribution.

Possible Solutions
I Size types

m : fin 5 = (invert even)(true)
I Stochastic Choice

10 / 12

Probabilistic program inversion

Computable distribution
I Consider the term (even x) to be open.
I Assume a distribution D over x

I D cannot be the uniform distribution.

Possible Solutions
I Size types

m : fin 5 = (invert even)(true)
I Stochastic Choice

10 / 12

Probabilistic program inversion

Computable distribution
I Consider the term (even x) to be open.
I Assume a distribution D over x
I D cannot be the uniform distribution.

Possible Solutions
I Size types

m : fin 5 = (invert even)(true)
I Stochastic Choice

10 / 12

Probabilistic program inversion

Computable distribution
I Consider the term (even x) to be open.
I Assume a distribution D over x
I D cannot be the uniform distribution.

Possible Solutions
I Size types

m : fin 5 = (invert even)(true)

I Stochastic Choice

10 / 12

Probabilistic program inversion

Computable distribution
I Consider the term (even x) to be open.
I Assume a distribution D over x
I D cannot be the uniform distribution.

Possible Solutions
I Size types

m : fin 5 = (invert even)(true)
I Stochastic Choice

10 / 12

Stocastic Types (WIP)

Example syntax

t := x | . . . | let x from τδ in t
δ := uniform | . . .
τ := . . .

Intended rule for let

δ-let :
Γ[x 7→ τxδ] ` t : τδ

Γ ` let x from τxδ in t : τδ

11 / 12

Thank you {~_^}.

12 / 12

